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The exact renormalization group is applied to a nonlinear diffusion equation with a discontinuous diffusion
coefficient. The generating functional of the solution for the initial-value problem of nonlinear diffusion
equations is first introduced, and next a regularization scheme is presented. It is shown that the renormalization
of an action functional in the generating functional leads to an anomalous diffusion exponent in full order of
the perturbation series with respect to a nonlinearity.
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I. INTRODUCTION

The renormalization group �RG� is a powerful tool to re-
veal universal behavior of various systems, including quan-
tum field theories and statistical mechanics �1�. Its basic idea
lies in the coarse-graining of short-distance degrees of free-
dom, which causes redefinition of parameters governing the
long-distance physics of the systems under investigation. In
spite of its conceptual simplicity, there exist in the RG
method many techniques for solution, and numerous appli-
cations have been made to equilibrium or near-equilibrium
systems �2,3�. In particular, exact RG �ERG� �also called
nonperturbative RG or functional RG� techniques and some
approximations based on them �1,4–7� have been attracting
much renewed interest in revealing nonperturbative phenom-
ena in field theories �8�, statistical mechanics �9�, and con-
densed matter physics �10–12�.

On the other hand, Goldenfeld et al. �13,14� have ex-
tended the RG method to systems far from equilibrium. They
have demonstrated that there exists a deep relationship be-
tween the RG and the intermediate asymptotics method �15�
in the study of the nonlinear partial-differential equations for
nonequilibrium systems. Their idea has attracted much inter-
est, and the RG approach to nonlinear differential equations
has been developed �16�.

In this paper, we apply the ERG method to a nonlinear
diffusion equation called the Barenblatt equation �15�. This
equation has a discontinuous diffusion coefficient; this dis-
continuity makes perturbative expansion more complicated if
one proceeds to higher order computations. We show in this
paper that the Polchinski equation, a version of the ERG
equation, is very efficient even for such a nonlinear diffusion
equation. It turns out that we can indeed solve the equation
for all orders in the perturbation series. The solution leads us
to the full anomalous diffusion exponent.

The outline of this paper is as follows. In Sec. II, we first
introduce the Barenblatt equation, and next define the gener-
ating functional of the solution of this equation. We also
introduce a regularization scheme convenient for the appli-
cation of the ERG method. In Sec. III, we derive the Polchin-
ski equation for the Barenblatt equation and solve it by as-
suming a particular form of the solution. This solution leads
us to the anomalous diffusion exponent which we compute in
Sec. IV. We summarize our results in Sec. V.

II. BARENBLATT EQUATION

In this section, we introduce the generating functional of
the solution for the Barenblatt equation and a regularization
scheme to render the solution finite. These play an important
role in the application of ERG techniques to the present
system.

Let us start with the following nonlinear diffusion equa-
tion called the Barenblatt equation:

�tu�x,t� − D�u��x
2u�x,t� = 0, �1�

with initial condition

u�x,t = 0� = q��x� , �2�

where

D�u� � ��1 + g��− ��tu�� �3�

denotes a nonlinear diffusion coefficient with � being a posi-
tive constant which makes ��tu dimensionless �below, we set
�=1, for simplicity�. Here, ��x�=0 �1� for x�0 �x�0�
stands for the step function. The dimensionless constant g
controls the nonlinearity of the diffusion coefficient. The
Barenblatt equation describes the filtration of a compressible
fluid through a compressible porous medium which can be
irreversibly deformed. Goldenfeld et al. �13� have obtained
asymptotic behavior of the solution by solving this equation
via an iteration scheme corresponding to a perturbative ex-
pansion with respect to g. This perturbation gives rise to
divergences: Their basic idea is introducing a renormaliza-
tion scheme which renders the solution finite and deriving an
anomalous diffusion exponent as an anomalous dimension in
the RG language. Although they have successfully obtained
the leading correction of the diffusion exponent, their
method seems difficult to extend to higher order due to the
discontinuous step-function nonlinearity. In the following
sections, we will introduce the generating functional of the
solution, and present a regularization scheme for the initial-
value problems of nonlinear diffusion equations.

A. Generating functional of the solution

First of all, we introduce the generating functional of the
solution for the Barenblatt equation. To this end, notice
�3,17� that the solution of Eq. �1� can be written as
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u�x,t� =� D� ��x,t���
t,x

�„�t� − D����x
2�…	

��
x

�„��x,0� − u�x,0�… . �4�

This expression can be rewritten as a functional integral if
the derivative with respect to t is interpreted as a forward
difference operator; namely, using the Fourier transformation
for the � function, we reach

u�x,t� = 
��x,t�� =
1

Z � D� D�̃ ��x,t�eiS, �5�

with S being an action functional

S = �
0

	

dt�
−	

	

dx��̃
−1� − g�̃��− �t����x
2� − �̃J� , �6�

where


�x,t� � e−x2/�4�t�/�4��t �7�

denotes the diffusion propagator and the generating func-
tional Z is defined by Z�D� D�̃ eiS, as usual. The field J
in the last term is defined by

J�x,t� � u�x,0���t� �8�

which controls the initial value of u. In what follows, we
examine the case with an initial condition �2�, but it should
be stressed that the generic initial-value problem can be
treated similarly.

B. Regularization scheme

As discussed by Goldenfeld et al. �13�, the perturbative
calculation diverges with the initial condition �2�. To regu-
larize the solution, they have introduced an initial distribu-
tion with a finite width such as u�x , t=0�=e−x2/�2l2� /�2�l2.
We instead introduce the short-time cutoff � for the propa-
gator to formulate the ERG for the present nonlinear diffu-
sion equation. To be specific, we define a modified propaga-
tor as


��x,t� = ��t − ��
�x,t� . �9�

One can easily check that this propagator indeed gives a
finite solution in the perturbation theory, applying it to the
calculations by Goldenfeld et al. �13�. This regularization
scheme can be used not only in the Barenblatt equation but
also in generic diffusion problems.

III. ERG EQUATION

Having defined the generating functional and the modified
propagator, we next derive an ERG equation for the action
functional �6�.

A. Derivation of the Polchinski equation

Using the propagator �9� with a cutoff �0 and introducing
a source term, we start with the generating functional

Z�J̃,J� =� D� D�̃ ei�̃·
�0

−1·�−iS�0
��̃,��−iJ̃·�−i�̃·J, �10�

where the bare action of the nonlinear term is

S�0
��̃,�� = g�̃ · ��− �t����x

2� . �11�

At the end of the calculations, we must set J�x , t�
=q��x���t� to obtain the solution for the initial-value
problem of the present equation. Here, the symbol a ·b
implies

a · b = �
0

	

dt�
−	

	

dx a�x,t�b�x,t� . �12�

Next, we introduce a new cutoff � ���0� and divide the
propagator into two parts 
�0

=
�+
�, where


� = ���t − �0� − ��t − ���
 ,


� = ��t − ��
 . �13�

Here, � and � imply the short-time and long-time modes,
respectively. Separating also � and �̃ into two fields �

=��+�� and �̃= �̃�+ �̃� enables us to rewrite the generat-
ing functional as

Z�J̃,J� � D��D�̃�ei�̃�·
�
−1·��Z��J̃,J;�̃�,��� ,

Z��J̃,J;�̃�,��� =� D��D�̃�ei�̃�·
�
−1·��

� e−iS�0
��̃�+�̃�,��+���−iJ̃·���+���−i��̃�+�̃��·J,

�14�

up to a proportionality constant. The field ��, �̃� and
�� , �̃� can be identified as fields describing short-time and
long-time modes, respectively. Integrating out the short-time
fields, we will next derive an effective action describing
long-time modes.

Changing the integration variables �̃� and �� into �̃�

= �̃− �̃� and ��=�−��, and integrating over the fields �̃
and � in Eq. �14� yields

Z��J̃,J;�̃�,��� =� D�̃ D� ei��̃−�̃��·
�
−1·��−���−iS�0

��̃,��−iJ̃·�−i�̃·J = e−iJ̃·
�·J−i�̃�·J−iJ̃·��−iS��J̃·
�+�̃�,
�·J+���, �15�
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where S� is defined by

e−iS��J̃·
�+�̃�,
�·J+��� � e−iS�0
�i�/�J+J̃·
�+�̃�,i�/�J̃+
�·J+���.

�16�

This equation implies that if we expand the exponential in
the right-hand side �RHS� and make all the derivatives � /�J

and � /�J̃ in S�0
act on J and J̃ in the right S�0

, we reach some
S� as a functional of

�̃ = J̃ · 
� + �̃�,

� = 
� · J + ��. �17�

Instead of carrying out such calculations, however, we can
alternatively determine the functional S� by noting that Z�

obeys

dZ�

d�
= i�i

�

�J
− �̃�	 ·

d
�
−1

d�
· �i

�

�J̃
− ��	Z�, �18�

which follows from Eq. �14�. Substituting Eq. �15� into Eq.
�18�, we obtain the following Polchinski RG equation:

�S�

��
=

�S�

��
·

d
�

d�
·

�S�

��̃
+ i tr

d
�

d�
·

�2S�

��̃ ��
. �19�

This equation can be simplified by taking into account the

�̃ dependence of the functional S�. The bare S�0
contains

only the first order term in �̃, but in the process of the
renormalization, Eq. �19� yields the zeroth order term in S�.
To be concrete, let us denote

S���̃,�� = �̃ · H���� + F��� . �20�

Substituting this into Eq. �19�, we find

�H�

��
=

�H�

��
·

d
�

d�
· H�, �21�

�F�

��
=

�F�

��
·

d
�

d�
· H� + itr

d
�

d�
·

�H�

��
�22�

with the bare functions

H�0
��� = g��− �t����x

2� ,

F�0
��� = 0. �23�

The RG equation for the H� term, which determines the so-
lution of the Barenblatt equation, is closed. Furthermore, it
has no loop corrections. Nevertheless, the initial-value prob-
lems are still nontrivial, since after obtaining H�, we must set
J=q��x���t� and determine the � dependence.

B. Solution of Polchinski equation

Since the functional equation �21� is still too difficult to
obtain analytic solutions, we assume the form of H� as

H�����x,t� = �
0

	

ds�
−	

	

dy V���t��x − y,t − s����y
2��y,s�

� V���̇� · ����x,t� �24�

with a certain unknown function V�, where we have denoted

�t�=�̇ and �x
2�=�� for simplicity. This assumption seems

natural from the point of view of the derivative expansion,
since the bare functional is second order with respect to �x.
Substituting this into Eq. �21�, we have

��V���̇� = V���̇� · ���
�� · V���̇� . �25�

The bare function is given by V�0
��̇��x−y , t−s�

=−g�(−�̇�x , t�)��x−y���t−s�. This equation can be solved if
V� is expanded in power series of g such that

V� = �
n=1

	

gnV�
�n�. �26�

Actually, we find that each term obeys

��V�
�n���̇� = �

n1+n2=n

V�
�n1���̇� · ���
�� · V�

�n2���̇� . �27�

From this equation, it follows that ��V�
�1�=0 and hence, it

turns out that V�
�1� is not renormalized; that is, V�

�1���̇�
�V��̇�, where

V��̇��x − y,t − s� = �„− �̇�x,t�…��x − y���t − s� . �28�

This enables us to calculate the higher order solutions by
substituting Eq. �28� into Eq. �27� and by solving it succes-
sively order by order,

V�
�n� = V�·�
�� · V�n−1. �29�

Thus, we have determined the functional H���� as an infinite
power series with respect to g.

In passing, we briefly discuss the solution for F�. Expand-
ing similarly the RG equation �22� in power series of g, we
find that the solution of Eq. �22� is F�=0 because of the fact
that the bare F�0

=0 as well as that the second term in the
RHS of Eq. �22� is zero due to the trace with respect to the
time variable.

Considering these, we end up with the renormalized ac-
tion functional,

S� = �̃ · �
n=1

	

gnV��̇��·�
�� · V��̇��n−1 · ��� � �
n=1

	

gnS�
�n�

�30�

with V defined by Eq. �28�. We have thus determined the
renormalized action in full order in g. This shows the effi-
ciency of the present approach.

To obtain the asymptotic solution of the Barenblatt equa-
tion, we must set J�x , t�=q��x���t� to specify the initial con-
dition and calculate dominant parts with respect to � /�0 in
the action obtained so far. The action decomposed into some
sectors by the substitution of Eq. �17�. Then, we readily no-
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tice that among them dominant contributions are from the

�̃�x , t�= �̃��x , t� and ��x , t�=q
�x , t� sectors in the
asymptotic region �� t. In the next section, we show that
such calculations indeed lead to the anomalous diffusion
exponent.

IV. ANOMALOUS DIFFUSION EXPONENT

In this section, we first give explicit calculations of the
anomalous diffusion exponent at the leading orders with re-
spect to g and check the renormalizability as well. Based on
these calculations, we next present the formula for the higher
order exponent.

A. First order

Let us start with the first order which Goldenfeld et al.
have calculated within the perturbation in the iteration
scheme. From Eq. �30�, one can obtain

S�
�1� = q�

0

	

dt�
−	

	

dx�̃��x,t��„− q
̇��x,t�…�
�� �x,t�

= − q� 1
�2�e

ln
�

�0
	�̃��0,0� + qSreg, �31�

where the regular part of S�1� is defined as

Sreg
�1� = �

�0

� dt

t
�

−1

1

d� ��̃���2�t�,t�f��� �32�

with

��̃��2�t�,t� � �̃���2�t�,t� − �̃��0,0� ,

f��� �
�2 − 1

2

e−�2/2

�2�
. �33�

Here, the regular term in Eq. �31� is not involved with the
renormalization of the action since we can safely set �0→0,
while the first term is relevant to the renormalization of q,
the height of the initial distribution. Thus it turns out that at
this order q is indeed renormalized, whereas others, espe-
cially g, are not renormalized. This feature actually holds
even in the next order, as will be checked below. This im-
plies that the present system is always at a fixed point be-
cause g is not renormalized, and hence, the anomalous di-
mension which is in general a scheme-dependent quantity is
a physical observable in the present case. Considering these,
we introduce the renormalization only to q and define the
renormalized q as qR=qZ. Expanding the renormalization
constant Z as

Z = 1 + �
n=1

gnZ�n�, �34�

with

Z�n� = − ��n� ln��/�0� , �35�

it turns out that the first order of Z reads

��1� =
1

�2�e
, �36�

from Eq. �31�. This indeed reproduces the result of
Goldenfeld et al. �13�.

B. Second order

The renormalization of q introduced above is indeed
enough to render the solution of the Barenblatt equation fi-
nite also in higher order. To verify this, let us next calculate
the second order renormalized action. Due to similar argu-
ments to the first order, the action �30� yields

S�
�2� = q�

2�0

�0+�

dt�
−�2�t

�2�t

dx�
�0

t−�0

dt1�
−�2�t1

�2�t1
dx1�̃��x,t��
��x

− x1,t − t1��
��x1,t1� + �reg . � , �37�

where reg. stands for regular parts of the renormalized ac-
tion. A similar but rather lengthy calculation leads to

S�
�2� = q

Z�1�2

2
�̃�0,0� + qZ�1�Sreg

�1� + qZ�2��̃�0,0� + �reg . �

�38�

where Z�2�=−��2�ln�� /�0� with

��2� = − �
0

1 d�1

�1
�

−1

1

d�1f��1�

�� 1
�2�e

−
1 − ��1�1

1 − �1

e−�1 − ��1�1�2/�2�1−�1��

�2��1 − �1�
	 .

�39�

This result indicates that the second order action correctly
includes the contributions from the first order re-
normalized action; namely, the renormalized action with
the source term q�̃�0,0� satisfies gS�

�1�+g2S�
�2�+q�̃�0,0�

=eZqSreg+eZq�̃�0,0� up to the second order of g. Therefore,
we expect in general that

qR = q��0/���, �40�

where

� = �
n=1

gn��n�. �41�

The constant � thus obtained indeed gives the anomalous
dimension of the solution for the present diffusion equation.

To see this explicitly, notice first that u�x , t� is given by

u�x , t�=� ln Z /�J̃�x , t� and second that J̃ is not renormalized.
Therefore, we have

u�x,t;q,�0� = u�x,t;qR,�� , �42�

which tells us that the solution is independent of �. Hence,
the renormalized solution should satisfy the following RG
equation:
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��
�

��
− �qR

�

�qR
	u�x,t;qR,�� = 0, �43�

where � is defined by Eq. �41�, or alternatively by

� = − �ln qR/� ln � . �44�

On the other hand, the dimensional analysis requires

u�x,t;q,�0� = q/��t��x/��t,�0/t� . �45�

Therefore, combining these observations, we can assume

u�x,t;qR,�� = qR/��t��x/��t,�/t� . �46�

Substituting this into Eq. �43�, it turns out that the relation

��x/��t,�/t� = ��/t���̃�x/��t� �47�

holds. Hence, the asymptotic behavior of the solution for the
Barenblatt equation is indeed given by

u � 1/t1/2+�. �48�

So far we have derived the anomalous diffusion exponent
up to second order with respect to g. The exponent of first
order is the same as that obtained by Goldenfeld et al.,
whereas the exponent of second order �39� is estimated as
��2��−0.063 546 by numerical integration. Although this
value is different from the result in Ref. �13�, it coincides
with that obtained later by Cole and Wagner given by a dif-
ferent integral formula derived via a different method �18�.
Since the anomalous diffusion exponent should be scheme-
independent in the present case, we believe that our result as
well as Cole and Wagner’s is correct.

C. Higher order

The efficiency of our method lies in the fact that one can
compute the higher order exponent in a similar way as
above. To present the exponent of nth order, we define a
function

g��1,�2,�2� =
e−��1 − ��2�2�2/�2�1−�2��

�2��1 − �2�
−

e−�2
2/2

�2�
. �49�

Then Eq. �30� yields

��n� = − �
0

1

�
j=1

n−1
d� j

� j
�

−1

1

�
j=1

n−1

d� j f��n−1�

�� 1
�2�e

−
1 − ��1�1

1 − �1

e−�1 − ��1�1�2/�2�1−�1��

�2��1 − �1�
	

� �
j=1

n−2
1

2

d2g�� j,� j+1,� j+1�
d� j

2 . �50�

For reference, we numerically estimate the exponent of third
order, ��3�=−0.003 14. The exponent obtained so far seems a
good convergent series.

V. SUMMARY AND DISCUSSION

In this paper, we have applied ERG techniques to the
initial-value problem of the Barenblatt equation, one of the
typical nonlinear diffusion equations. We have derived the
anomalous diffusion exponent in full order with respect to
the parameter controlling the nonlinearity. This implies that
the ERG approach is efficient for systems far from equilib-
rium described by nonlinear partial-differential equations as
well as for field theories and statistical mechanics.

Although we have been able to obtain the formula of the
diffusion exponent given by multiple integrals, it seems in-
teresting to explore it in a nonperturbative way, since the
formula of ��n� obtained in this paper is still hard to compute
numerically for large n. To this end, we need to develop
methods of solving nonperturbatively the ERG equation for
the nonlinear diffusion equations presented in this paper.

The present approach would be useful for other types of
initial-value problem for nonlinear diffusion equations. In
particular, application to the critical dynamic of nonlinear
traveling waves is of great interest. One of the well known
examples is the Kolmogorov-Pitrovsky-Piscounov equation
�19� which shows an interesting universal behavior in the
selection of the front velocity. This problem has been ad-
dressed by Paquette et al. �20�, but more detailed analysis is
needed if one wants to understand, e.g., the universal loga-
rithmic corrections to the velocity in the pulled front, from
the RG point of view. Application of the ERG to such prob-
lems would be quite interesting.
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